Wednesday, February 22, 2012

Voice recorder/playback circuit

Description.
This circuit is designed in response to a request made by Mr Vignesh. What he requested was a circuit for recording and playing voice. I think this circuit is enough for the purpose. This circuit is based on the IC ISD1020A from ISD. The ISD1020A is a CMOS single chip record/playback device. The chip can record voice for 20seconds and has many features like automatic gain control, anti aliasing filter, built in audio amplifier and smoothing filter. The IC is fully compatible to microprocessors and can be used for a myriad of applications. The voice is stored in their natural form in the non-volatile memory cells inside the IC which enables a high quality reproduction. The recorder voice can be retained in the chip for as long as 100 years and the chip is capable to have a 100000 read/write cycles.

The circuit is designed as per the application diagram in the datasheet.Pin23(CE) is the chip enable pin and it has to be held low using switch S1 in order to perform a record or playback cycle. Pin 27 (P/R) is the playback/record pin and a high level on it selects a playback cycle while a low level on it selects a record cycle. The selection can be done using the switch S3.The pin 24 (PD) is the power down pin. It has to be held high using switch S2 in order to pull the device to a extremely low power mode while there is no recording or playback (idle state).The resistor R1 and capacitor C1 determines the release time of the internal AGC circuit. The resistor R5 and capacitor C5 connected across the pin 20 and pin 21 provides an additional cut-off to the low frequency end of the voice pass band.

Circuit diagram.




Notes.

  • The circuit must be assembled on a good quality PCB.
  • The circuit can be powered from a 5V DC source.
  • Switches S1 to S3 must be miniature SPDT switches.
  • Speaker K2 can be a 16 Ω loud speaker.
  • K1 can be an electret microphone.

Automatic changeover circuit

Description.
The circuit diagram shown here is of a automatic changeover switch using IC LTC4412 from Linear Technologies. This circuit can be used for the automatic switchover of a load between a battery and a wall adapter.LTC4412 controls an external P-channel MOSFET to create a near ideal diode function for power switch over and load sharing. This makes the LT4412 an ideal replacement for power supply ORing diodes. A wide range of MOSFETs can be driven using the IC and this gives much flexibility in terms of load current. The LT4412 also has a bunch of good features like reverse battery protection, manual control input, MOSFET gate protection clamp etc.

The diode D1 prevents the reverse flow of current to the wall adapter when there is no mains supply. Capacitor C1 is the output filter capacitor. Pin 4 of the IC is called the status output. When wall adapter input is present the status output pin will be high and this can be used to enable another auxiliary P-channel MOSFET (not shown in the circuit diagram).

Circuit diagram.




Notes.

  • Assemble the circuit on a good quality PCB.
  • The wall adapter input can be anything between 3 to 28V DC.
  • The battery voltage can be anything between 2.5V to 28V.
  • Do not connect loads that consume more than 2A.
  • Maximum continuous drain current of Q1 (FDN306P) is 2.5A.
  • D1 (1N5819 is a 1A Schottky diode.
  • Q1 (FDN306P) is a P-channel MOSFET.

Chager circuit for SMF batteries

Description.

Here is a simple charger circuit for charging SMF(sealed maintenance free ) batteries.The charger circuit being curernt and voltage regulated,can be safely used to charge SMF batteries of 1.2 AH rating.This circuit was actually designed in response to a request from a reader.With slight modifications you can use it for charging any sort of SMF batteries.

The first part of the circuit is the power supply made of transformer T1 and diodes D1&D2.The capacitor C1 filters the rectifier output .The next part is the section comprising of IC1 and Q1 which provides the necessary volatge and current regulation.The diode D3 prevents ther reverse flow of charge from the battery .

Circuit diagram with parts list.


Notes.

  • Assemble the circuit on a good quality PCB or common board.
  • An ammeter can be conncted in series with the battery to monitor the charging current.
  • Do not short circuit the charging terminals of the circuit.The circuit doesnot have short circuit protection.
  • R4 is the component that determines the charging current.Here it is set to be 120 mA. R4= (0.6 V/Charging current).By selecting the proper value of R4 according to equation, you can charge batteries that require different charging currents.

Battery Level Indicator Circuit

Description

Here is a easy to build low battery level indicator circuit that produces a visible indication by flashing a LED when the battery voltage drops below a predetermined voltage.The circuit is based on Panasonic’s IC MN13811G and a efficient flasher based on transistors Q1&Q2.Here when the battery voltage drops below 2.4 V the output of the IC is activated and the flasher starts flashing.This circuit here is an ideal one for monitoring the level of all types of 3V batteries.The circuit is power efficient with a idle current drawing as less as 1 uA , and a current drawing while flashing as less as 20uA.

Circuit Diagram with Parts list .


Notes.

Assemble the circuit on a good quality PCB or common board.

Do not keep the soldering iron tip on the IC’s pins for long time.

IC MN13811 series are available with different trip point voltages( from 2.4V t0 4.8V) ie MN13811G to MN13811U .If you need a trip point other than 2.4 shown here, you can choose the corresponding IC from the data sheet and use it in the circuit here.

Lead acid battery charger circuit

Lead Acid Battery Charger

Description

Here is a lead acid battery charger circuit using IC LM 317.The IC here provides the correct charging voltage for the battery.A battery must be charged with 1/10 its Ah value.This charging circuit is designed based on this fact.The charging current for the battery is controlled by Q1 ,R1,R4 and R5. Potentiometer R5 can be used to set the charging current.As the battery gets charged the the current through R1 increases .This changes the conduction of Q1.Since collector of Q1 is connected to adjust pin of IC LM 317 the voltage at the output of of LM 317 increases.When battery is fully charged charger circuit reduces the charging current and this mode is called trickle charging mode.

Battery Charger Circuit Diagram with Parts List.

Notes .

  • Connect a battery to the circuit in series with a ammeter.Now adjust R5 to get the required charging current. Charging current = (1/10)*Ah value of battery.
  • Input to the IC must be at least 18V for getting proper charging voltage at the output .Take a look at the data sheet of LM 317 for better understanding.
  • Fix LM317 with a heat sink.


Tuesday, February 21, 2012

LM3914 12V Battery Monitor Circuit

This bar graph LED battery level indicator circuit is based on LM3914 monolithic IC from National Semiconductor that senses the voltage levels of the battery and drives the 10 light emitting diodes based on the voltage level that is detected.

PARTS LIST
R1 56kΩ
R2 18kΩ
R3 3.9kΩ
VR1 10k Preset
D1 – D10 LED
IC1 LM3914

To calibrate the circuit it must be connected to an adjustable regulated power supply.
Connect an input voltage of 15 volt between the positive and negative poles and adjust the 10K preset until Led 10 lights up. Lower the voltage and in sequence all other Led’s will light up. Check that Led 1 lights up at approximately 10 volts.

This circuit to your own needs by making small modifications. The circuits above is set for ‘DOT’ mode, meaning only one Led at a time will be lit. If you wish to use the ‘BAR’ mode, then connect pin 9 to the positive supply rail, but obviously with increased current consumption.

The LED brightness can be adjusted up- or down by choosing a different value for the 3K9 resistor connected at pin 6 and 7.

You can also change the to monitoring voltage level.

For example, let’s say you wanted to change to 12 – 15 volt,
Remove the R2 resistor and connect 15volt to the input (+ and -) and adjust the 10K potentiometer until Led 10 lights up. Connect 200 Kilo-ohm potentiometer at pin 4 and -. Reconnect a voltage from 12 Volt to the input. Now adjust the 200K potentiometer until Led 1 lights up. When you are satisfied with the adjustment, feel free to exchange the 200K potentiometer with resistors again.(after measuring the resistance from the pot, obviously).

Digital Remote Thermometer

Remote sensor sends data via mains supply, Temperature range: 00.0 to 99.9 °C

This circuit is intended for precision centigrade temperature measurement, with a transmitter section converting to frequency the sensor's output voltage, which is proportional to the measured temperature. The output frequency bursts are conveyed into the mains supply cables. The receiver section counts the bursts coming from mains supply and shows the counting on three 7-segment LED displays. The least significant digit displays tenths of degree and then a 00.0 to 99.9 °C range is obtained. Transmitter-receiver distance can reach hundred meters, provided both units are connected to the mains supply within the control of the same light-meter.

Transmitter circuit operation:

IC1 is a precision centigrade temperature sensor with a linear output of 10mV/°C driving IC2, a voltage-frequency converter. At its output pin (3), an input of 10mV is converted to 100Hz frequency pulses. Thus, for example, a temperature of 20°C is converted by IC1 to 200mV and then by IC2 to 2KHz. Q1 is the driver of the power output transistor Q2, coupled to the mains supply by L1 and C7, C8.

Circuit diagram:
Transmitter Circuit Diagram

Transmitter parts:

R1 = 100K 1/4W Resistors
R2 = 47R 1/4W Resistor
R3 = 100K 1/4W Resistors
R4 = 5K 1/2W Trimmer Cermet
R5 = 12K 1/4W Resistor
R6 = 10K 1/4W Resistor
R7 = 6K8 1/4W Resistor
R8 = 1K 1/4W Resistors
R9 = 1K 1/4W Resistors

C1 = 220nF 63V Polyester Capacitor
C2 = 10nF 63V Polyester Capacitor
C3 = 1µF 63V Polyester Capacitor
C4 = 1nF 63V Polyester Capacitors
C5 = 2n2 63V Polyester Capacitor
C6 = 1nF 63V Polyester Capacitors
C7 = 47nF 400V Polyester Capacitors
C8 = 47nF 400V Polyester Capacitors
C9 = 1000µF 25V Electrolytic Capacitor

D1 = 1N4148 75V 150mA Diode
D2 = 1N4002 100V 1A Diodes
D3 = 1N4002 100V 1A Diodes
D4 = 5mm. Red LED

IC1 = LM35 Linear temperature sensor IC
IC2 = LM331 Voltage-frequency converter IC
IC3 = 78L06 6V 100mA Voltage regulator IC

Q1 = BC238 25V 100mA NPN Transistor
Q2 = BD139 80V 1.5A NPN Transistor
T1 = 220V Primary, 12+12V Secondary 3VA Mains transformer
PL = Male Mains plug & cable
L1 = Primary (Connected to Q2 Collector): 100 turns
Secondary: 10 turns
Wire diameter: O.2mm. enameled
Plastic former with ferrite core. Outer diameter: 4mm.

Receiver circuit operation:

The frequency pulses coming from mains supply and safely insulated by C1, C2 & L1 are amplified by Q1; diodes D1 and D2 limiting peaks at its input. Pulses are filtered by C5, squared by IC1B, divided by 10 in IC2B and sent for the final count to the clock input of IC5. IC4 is the time-base generator: it provides reset pulses for IC1B and IC5 and enables latches and gate-time of IC5 at 1Hz frequency. It is driven by a 5Hz square wave obtained from 50Hz mains frequency picked-up from T1 secondary, squared by IC1C and divided by 10 in IC2A. IC5 drives the displays' cathodes via Q2, Q3 & Q4 at a multiplexing rate frequency fixed by C7. It drives also the 3 displays' paralleled anodes via the BCD-to-7 segment decoder IC6. Summing up, input pulses from mains supply at, say, 2KHz frequency, are divided by 10 and displayed as 20.0°C.

Circuit diagram:
Receiver Circuit Diagram

Receiver Parts:

R1 = 100K 1/4W Resistor
R2 = 1K 1/4W Resistor
R3 = 12K 1/4W Resistors
R4 = 12K 1/4W Resistors
R5 = 47K 1/4W Resistor
R6 = 12K 1/4W Resistors
R8 = 12K 1/4W Resistors
R9-R15=470R 1/4W Resistors
R16 = 680R 1/4W Resistor

C1 = 47nF 400V Polyester Capacitors
C2 = 47nF 400V Polyester Capacitors
C3 = 1nF 63V Polyester Capacitors
C4 = 10nF 63V Polyester Capacitor
C7 = 1nF 63V Polyester Capacitors
C5 = 220nF 63V Polyester Capacitors
C6 = 220nF 63V Polyester Capacitors
C8 = 1000µF 25V Electrolytic Capacitor
C9 = 100pF 63V Ceramic Capacitor
C10 = 220nF 63V Polyester Capacitors

D1 = 1N4148 75V 150mA Diodes
D2 = 1N4148 75V 150mA Diodes
D3 = 1N4002 100V 1A Diodes
D4 = 1N4002 100V 1A Diodes
D5 = 1N4148 75V 150mA Diodes
D6 = Common-cathode 7-segment LED mini-displays
D7 = Common-cathode 7-segment LED mini-displays
D8 = Common-cathode 7-segment LED mini-displays

IC1 = 4093 Quad 2 input Schmitt NAND Gate IC
IC2 = 4518 Dual BCD Up-Counter IC
IC3 = 78L12 12V 100mA Voltage regulator IC
IC4 = 4017 Decade Counter with 10 decoded outputs IC
IC5 = 4553 Three-digit BCD Counter IC
IC6 = 4511 BCD-to-7-Segment Latch/Decoder/Driver IC

Q1 = BC239C 25V 100mA NPN Transistor
Q2 = BC327 45V 800mA PNP Transistors
Q3 = BC327 45V 800mA PNP Transistors
Q4 = BC327 45V 800mA PNP Transistors

PL = Male Mains plug & cable
T1 = 220V Primary, 12+12V Secondary 3VA Mains transformer
L1 = Primary (Connected to C1 & C2): 10 turns
Secondary: 100 turns
Wire diameter: O.2mm. enameled
Plastic former with ferrite core. Outer diameter: 4mm.

Notes:
  • D6 is the Most Significant Digit and D8 is the Least Significant Digit.
  • R16 is connected to the Dot anode of D7 to illuminate permanently the decimal point.
  • Set the ferrite cores of both inductors for maximum output (best measured with an oscilloscope, but not critical).
  • Set trimmer R4 in the transmitter to obtain a frequency of 5KHz at pin 3 of IC2 with an input of 0.5Vcc at pin 7 (a digital frequency meter is required).
  • More simple setup: place a thermometer close to IC1 sensor, then set R4 to obtain the same reading of the thermometer in the receiver's display.
  • Keep the sensor (IC1) well away from heating sources (e.g. Mains Transformer T1).
  • Linearity is very good.
  • Warning! Both circuits are connected to 230Vac mains, then some parts in the circuit boards are subjected to lethal potential! Avoid touching the circuits when plugged and enclose them in plastic boxes.

Thursday, February 16, 2012

Cell phone detector



This handy mobile bug or cell phone detector, pocket-size mobile transmission detector or sniffer can sense the presence of an activated mobile cellphone from a distance of one and-a-half metres. So it can be used to prevent use of mobile phones in examination halls, confidential rooms, etc. It is also useful for detecting the use of mobile phone for spying and unauthorised video transmission.

The circuit can detect both the incoming and outgoing calls, SMS and video transmission even if the mobile phone is kept in the silent mode. The moment the bug detects RF transmission signal from an activated mobile phone, it starts sounding a beep alarm and the LED blinks. The alarm continues until the signal transmission ceases.

An ordinary RF detector using tuned LC circuits is not suitable for detecting signals in the GHz frequency band used in mobile phones. The transmission frequency of mobile phones ranges from 0.9 to 3 GHz with a wavelength of 3.3 to 10 cm. So a circuit detecting gigahertz signals is required for a mobile bug.

Here the circuit uses a 0.22μF disk capacitor (C3) to capture the RF signals from the mobile phone. The lead length of the capacitor is fixed as 18 mm with a spacing of 8 mm between the leads to get the desired frequency. The disk capacitor along with the leads acts as a small gigahertz loop antenna to collect the RF signals from the mobile phone.


Op-amp IC CA3130 (IC1) is used in the circuit as a current-to-voltage converter with capacitor C3 connected between its inverting and non-inverting inputs. It is a CMOS version using gate-protected p-channel MOSFET transistors in the input to provide very high input impedance, very low input current and very high speed of performance. The output CMOS transistor is capable of swinging the output voltage to within 10 mV of either supply voltage terminal.

Capacitor C3 in conjunction with the lead inductance acts as a transmission line that intercepts the signals from the mobile phone. This capacitor creates a field, stores energy and transfers the stored energy in the form of minute current to the inputs of IC1. This will upset the balanced input of IC1 and convert the current into the corresponding output voltage.

Capacitor C4 along with high-value resistor R1 keeps the non-inverting input stable for easy swing of the output to high state. Resistor R2 provides the discharge path for capacitor C4. Feedback resistor R3 makes the inverting input high when the output becomes high. Capacitor C5 (47pF) is connected across ‘strobe’ (pin 8) and ‘null’ inputs (pin 1) of IC1 for phase compensation and gain control to optimise the frequency response.

When the cell phone detector signal is detected by C3, the output of IC1 becomes high and low alternately according to the frequency of the signal as indicated by LED1. This triggers monostable timer IC2 through capacitor C7. Capacitor C6 maintains the base bias of transistor T1 for fast switching action. The low-value timing components R6 and C9 produce very short time delay to avoid audio nuisance.

Assemble the cell phone detector circuit on a general purpose PCB as compact as possible and enclose in a small box like junk mobile case. As mentioned earlier, capacitor C3 should have a lead length of 18 mm with lead spacing of 8 mm. Carefully solder the capacitor in standing position with equal spacing of the leads. The response can be optimised by trimming the lead length of C3 for the desired frequency. You may use a short telescopic type antenna.
Use the miniature 12V battery of a remote control and a small buzzer to make the gadget pocket-size. The unit will give the warning indication if someone uses mobile phone within a radius of 1.5 meters.